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Planck’s Law and Light Quantum Hypothesis.
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Planck’s formula for the distribution of energy in the radiation from a
black body was the starting point of the quantum theory, which has been
developed during the last 20 years and has borne a wealth of fruit in energy
domain of physics. Since its publication in 1901 many methods for deriving
this law have been proposed. It is recognized that basic assumptions of the
quantum theory are irreconcilable with the laws of classical electrodynamics.
All derivations up to now use the relation

ρνdν =
8πν2dν

c3
E,

that is, the relation between the radiation density and the mean energy of
an oscillator, and they make assumptions about the number of degrees of
freedom of the ether, which appear in the above formula (the first factor
on the right– hand side). This factor, however, can be derived only from
classical theory. This is the unsatisfactory feature in all derivations and it
is therefore no wonder that attempts are being made to obtain a derivation
that is free of this logical flaw.

Einstein has given a remarkably elegant derivation. He recognized the
logical defect of all previous derivations and tried to deduce the formula
independently of classical theory. From very simple assumptions about the
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energy exchange between molecules and a radiation field he found the rela-
tion

ρν =
αmn

e
εm−εn
kT − 1

.

To make this formula agree with Planck’s he had to use Wien’s displacement
law and Bohr’s correspondence principle. Wien’s law is based on classical
theory and the correspondence principle assumes that the quantum theory
and the classical theory coincide in centrum limits.

In all cases it appears to me that the derivations have not been suffi-
ciently justified from a logical point of view. As opposed to these the light
quantum hypothesis combined with statistical mechanics (as it was formu-
lated to meet the needs of the quantum theory) appears sufficient for the
derivation of the law independent of classical theory. In the following I shall
sketch the method briefly.

Let the radiation be enclosed in the volume V and let its total energy
be E. Let various types of quanta be present of abundances N8 and energy
hν8(s = 0 to s =∞). The total energy is then

E =
∑
s

Nshνs = V

∫
ρνdν (1)

The solution of the problem therefore requires the determination of the
NS , which, in turn, determine ρν . If we can give the probability for each
distribution characterized by arbitrary values of Ns then the solution is given
by the condition that this probability is to be a maximum, keeping in mind
the condition (1) which is a constraint on the problem. We now seek this
probability.

The quantum has the momentum hνs
c in the direction of its motion. The

momentary state of the quantum is characterized by its coordinates x, y, z
and the corresponding components of the momentum px, py, pz. These six
quantities can be considered as point coordinates in a six–dimensional space,
where we have the relation

px2 + py2 + pz2 =
h2ν2

c2
,

in virtue of which point representing the quantum in our six–dimensional
space is forced to lie on a cylindrical surface determined by the frequency.
To the frequency range dνs there belongs in this sense the phase space∫

dx dy dz dpx dpy dpz = V · 4π(hν/c)
2hdν/c = 4π · h3ν3/c3 · V · dν
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If we divide the total phase volume into cells of size h3, there are then
4π · ν2/c3 · dν cells in the frequency range dν . Nothing definite can be said
about the method of dividing the phase space in this manner. However,
the total number of cells must be considered as equal to the number of
possible ways of placing a quantum in this volume. To take into account
polarization it appears necessary to multiply this number by 2 so that we
obtain 8πV ν2dν/c3 as the number of cells belonging to dν .

It is now easy to calculate the thermodynamic probability of a (macro-
scopically defined) state. Let N s be number of quanta belonging to the
frequency range dνs. In how many ways can these be distributed among the
cells that belong to dνs? Let ps0 be number of empty cells., ps1 the number
containing 1 quantum, ps2 the number containing 2 quanta, and so on. The
number of possible distributions is then

As!

ps0!ps1! . . .
where As =

8πν2

c3
· V dνs

and where
N s = 0 · ps0 + 1 · ps1 + 2ps2 + . . .

is the number of quanta belonging to dνs.
The probability W of the state defined by all psr is clearly

Π
As!

sp
s
0!ps1 . . .

Taking into account that the psr are large numbers we have

logW =
∑
s

As logAs −∑
s

∑
r

psr log psr

where
As =

∑
r

psr.

This expression must be a maximum under the constraints

E =
∑
s

N shνs; N s =
∑
r

= rpsr.

Carrying through the variations we obtain the conditions∑
s

∑
r

δpsr(1 + log psr) = 0,
∑

δN shνs = 0

∑
r

δpsr = 0 δN s =
∑
r

rδpsr.
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From this we obtain∑
r

∑
s

δpsr(1 + log psr + λs) +
1

β

∑
s

rδpsr = 0

From this we first see that

psr = Bse
−rhν

s

β .

Since, however,

As =
∑
r

Bse
−rhν

s

β = Bs(1− e−
hνs

β )−1

then

Bs = As(1− e−
hνs

β ).

We further have

N s =
∑
r

rpsr =
∑
r

rAs(1− e−
hνs

β )e
−rhν

s

β =
Ase

−hν
s

β

1− e
hνs

β

Taking into account the value of As found above, we have

E =
∑
S

8πhνs3dνs

c3
V

e
−hν

s

β

1− ehνs/β
Using the result obtained previously

S = k

[
E

β
−∑

s

As log(1− ehνs/β)

]
and nothing that

∂S

∂E
=

1

T
we obtain

β = kT

Hence

E =
∑
S

8πhνs3

c3
V

1

ehν
s/kT − 1

dνs

which is Planck’s formula.
Comment of translator. Bose’s derivation of Planck’s formula appears

to me to be an important step forward. The method used here gives also
the quantum theory of an ideal gas, as I shall show elsewhere. [A. Einstein]
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