Table B. 4

B. 7 Integral Calculus

We think of integration as the inverse of differentiation. As an example, consider the expression

$$
\begin{equation*}
f(x)=\frac{d y}{d x}=3 a x^{2}+b \tag{B.34}
\end{equation*}
$$

which was the result of differentiating the function

$$
y(x)=a x^{3}+b x+c
$$

in Example 4. We can write Equation B. 34 as $d y=f(x) d x=\left(3 a x^{2}+b\right) d x$ and obtain $y(x)$ by "summing" over all values of x. Mathematically, we write this inverse operation

$$
y(x)=\int f(x) d x
$$

For the function $f(x)$ given by Equation B.34, we have

$$
y(x)=\int\left(3 a x^{2}+b\right) d x=a x^{3}+b x+c
$$

where c is a constant of the integration. This type of integral is called an indefinite integral because its value depends on the choice of c.

A general indefinite integral $I(x)$ is defined as

$$
\begin{equation*}
I(x)=\int f(x) d x \tag{B.35}
\end{equation*}
$$

where $f(x)$ is called the integrand and $f(x)=d I(x) / d x$.
For a general continuous function $f(x)$, the integral can be described as the area under the curve bounded by $f(x)$ and the x axis, between two specified values of x, say, x_{1} and x_{2}, as in Figure B.14.

The area of the blue element is approximately $f\left(x_{i}\right) \Delta x_{i}$. If we sum all these area elements from x_{1} and x_{2} and take the limit of this sum as $\Delta x_{i} \rightarrow 0$, we obtain the true

Derivative for Several Functions
$\frac{d}{d x}(a)=0$
$\frac{d}{d x}\left(a x^{n}\right)=n a x^{n-1}$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\frac{d}{d x}(\sin a x)=a \cos a x$
$\frac{d}{d x}(\cos a x)=-a \sin a x$
$\frac{d}{d x}(\tan a x)=a \sec ^{2} a x$
$\frac{d}{d x}(\cot a x)=-a \csc ^{2} d x$
$\frac{d}{d x}(\sec x)=\tan x \sec x$
$\frac{d}{d x}(\csc x)=-\cot x \csc x$
$\frac{d}{d x}(\ln a x)=\frac{1}{x}$

Note: The symbols a and n represent constants.

Figure B. 14
area under the curve bounded by $f(x)$ and x, between the limits x_{1} and x_{2} :

$$
\begin{equation*}
\text { Area }=\lim _{\Delta x \rightarrow 0} \sum_{i} f\left(x_{i}\right) \Delta x_{i}=\int_{x_{1}}^{x_{2}} f(x) d x \tag{B.36}
\end{equation*}
$$

Integrals of the type defined by Equation B. 36 are called definite integrals.
One common integral that arises in practical situations has the form

$$
\begin{equation*}
\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad(n \neq-1) \tag{B.37}
\end{equation*}
$$

This result is obvious, being that differentiation of the right-hand side with respect to x gives $f(x)=x^{n}$ directly. If the limits of the integration are known, this integral becomes a definite integral and is written

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} x^{n} d x=\left.\frac{x^{n+1}}{n+1}\right|_{x_{1}} ^{x_{2}}=\frac{x_{2}{ }^{n+1}-x_{1}{ }^{n+1}}{n+1} \quad(n \neq-1) \tag{B.38}
\end{equation*}
$$

Examples

1. $\left.\int_{0}^{a} x^{2} d x=\frac{x^{3}}{3}\right]_{0}^{a}=\frac{a^{3}}{3}$
2. $\left.\int_{0}^{b} x^{3 / 2} d x=\frac{x^{5 / 2}}{5 / 2}\right]_{0}^{b}=\frac{2}{5} b^{5 / 2}$
3. $\left.\int_{3}^{5} x d x=\frac{x^{2}}{2}\right]_{3}^{5}=\frac{5^{2}-3^{2}}{2}=8$

Partial Integration

Sometimes it is useful to apply the method of partial integration (also called "integrating by parts") to evaluate certain integrals. The method uses the property that

$$
\begin{equation*}
\int u d v=u v-\int v d u \tag{B.39}
\end{equation*}
$$

where u and v are carefully chosen so as to reduce a complex integral to a simpler one. In many cases, several reductions have to be made. Consider the function

$$
I(x)=\int x^{2} e^{x} d x
$$

This can be evaluated by integrating by parts twice. First, if we choose $u=x^{2}, v=e^{x}$, we obtain

$$
\int x^{2} e^{x} d x=\int x^{2} d\left(e^{x}\right)=x^{2} e^{x}-2 \int e^{x} x d x+c_{1}
$$

Now, in the second term, choose $u=x, v=e^{x}$, which gives

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-2 x e^{x}+2 \int e^{x} d x+c_{1}
$$

or

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-2 x e^{x}+2 e^{x}+c_{2}
$$

The Perfect Differential

Another useful method to remember is the use of the perfect differential, in which we look for a change of variable such that the differential of the function is the differential of the independent variable appearing in the integrand. For example, consider the integral

$$
I(x)=\int \cos ^{2} x \sin x d x
$$

This becomes easy to evaluate if we rewrite the differential as $d(\cos x)=-\sin x d x$. The integral then becomes

$$
\int \cos ^{2} x \sin x d x=-\int \cos ^{2} x d(\cos x)
$$

If we now change variables, letting $y=\cos x$, we obtain

$$
\int \cos ^{2} x \sin x d x=-\int y^{2} d y=-\frac{y^{3}}{3}+c=-\frac{\cos ^{3} x}{3}+c
$$

Table B. 5 lists some useful indefinite integrals. Table B. 6 gives Gauss's probability integral and other definite integrals. A more complete list can be found in various handbooks, such as The Handbook of Chemistry and Physics, CRC Press.

Table B. 5

Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.)
$\int x^{n} d x=\frac{x^{n+1}}{n+1} \quad($ provided $n \neq-1)$
$\int \frac{d x}{x}=\int x^{-1} d x=\ln x$
$\int \frac{d x}{a+b x}=\frac{1}{b} \ln (a+b x)$
$\int \frac{x d x}{a+b x}=\frac{x}{b}-\frac{a}{b^{2}} \ln (a+b x)$
$\int \frac{d x}{x(x+a)}=-\frac{1}{a} \ln \frac{x+a}{x}$
$\int \frac{d x}{(a+b x)^{2}}=-\frac{1}{b(a+b x)}$
$\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
$\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \ln \frac{a+x}{a-x} \quad\left(a^{2}-x^{2}>0\right)$
$\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \frac{x-a}{x+a} \quad\left(x^{2}-a^{2}>0\right)$
$\int \frac{x d x}{a^{2} \pm x^{2}}= \pm \frac{1}{2} \ln \left(a^{2} \pm x^{2}\right)$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}=-\cos ^{-1} \frac{x}{a} \quad\left(a^{2}-x^{2}>0\right) \\
& \int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left(x+\sqrt{x^{2} \pm a^{2}}\right) \\
& \int \frac{x d x}{\sqrt{a^{2}-x^{2}}}=-\sqrt{a^{2}-x^{2}} \\
& \int \frac{x d x}{\sqrt{x^{2} \pm a^{2}}}=\sqrt{x^{2} \pm a^{2}} \\
& \int \sqrt{a^{2}-x^{2}} d x=\frac{1}{2}\left(x \sqrt{a^{2}-x^{2}}+a^{2} \sin ^{-1} \frac{x}{a}\right) \\
& \int x \sqrt{a^{2}-x^{2}} d x=-\frac{1}{3}\left(a^{2}-x^{2}\right)^{3 / 2} \\
& \int \sqrt{x^{2} \pm a^{2}} d x=\frac{1}{2}\left[x \sqrt{x^{2} \pm a^{2}} \pm a^{2} \ln \left(x+\sqrt{x^{2} \pm a^{2}}\right)\right] \\
& \int x\left(\sqrt{x^{2} \pm a^{2}}\right) d x=\frac{1}{3}\left(x^{2} \pm a^{2}\right)^{3 / 2} \\
& \int e^{a x} d x=\frac{1}{a} e^{a x} \\
& \int \ln a x d x=(x \ln a x)-x
\end{aligned}
$$

Table B. 5

Some Indefinite Integrals (An arbitrary constant should be added to each of these integrals.) continued
$\int x e^{a x} d x=\frac{e^{a x}}{a^{2}}(a x-1)$
$\int \cos ^{2} a x d x=\frac{x}{2}+\frac{\sin 2 a x}{4 a}$
$\int \frac{d x}{a+b e^{c x}}=\frac{x}{a}-\frac{1}{a c} \ln \left(a+b e^{c x}\right)$
$\int \frac{d x}{\sin ^{2} a x}=-\frac{1}{a} \cot a x$
$\int \sin a x d x=-\frac{1}{a} \cos a x$
$\int \frac{d x}{\cos ^{2} a x}=\frac{1}{a} \tan a x$
$\int \cos a x d x=\frac{1}{a} \sin a x$
$\int \tan ^{2} a x d x=\frac{1}{a}(\tan a x)-x$
$\int \tan a x d x=-\frac{1}{a} \ln (\cos a x)=\frac{1}{a} \ln (\sec a x)$
$\int \cot ^{2} a x d x=-\frac{1}{a}(\cot a x)-x$
$\int \cot a x d x=\frac{1}{a} \ln (\sin a x)$
$\int \sin ^{-1} a x d x=x\left(\sin ^{-1} a x\right)+\frac{\sqrt{1-a^{2} x^{2}}}{a}$
$\int \sec a x d x=\frac{1}{a} \ln (\sec a x+\tan a x)=\frac{1}{a} \ln \left[\tan \left(\frac{a x}{2}+\frac{\pi}{4}\right)\right]$
$\int \cos ^{-1} a x d x=x\left(\cos ^{-1} a x\right)-\frac{\sqrt{1-a^{2} x^{2}}}{a}$
$\int \csc a x d x=\frac{1}{a} \ln (\csc a x-\cot a x)=\frac{1}{a} \ln \left(\tan \frac{a x}{2}\right)$
$\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2} \sqrt{x^{2}+a^{2}}}$
$\int \sin ^{2} a x d x=\frac{x}{2}-\frac{\sin 2 a x}{4 a}$
$\int \frac{x d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=-\frac{1}{\sqrt{x^{2}+a^{2}}}$

Table B. 6

$$
\begin{aligned}
& \text { Gauss's Probability Integral and Other Definite Integrals } \\
& \begin{aligned}
& \int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} \\
& I_{0}=\int_{0}^{\infty} e^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}} \quad \text { (Gauss's probability integral) } \\
& I_{1}=\int_{0}^{\infty} x e^{-a x^{2}} d x=\frac{1}{2 a} \\
& I_{2}=\int_{0}^{\infty} x^{2} e^{-a x^{2}} d x=-\frac{d I_{0}}{d a}=\frac{1}{4} \sqrt{\frac{\pi}{a^{3}}} \\
& I_{3}=\int_{0}^{\infty} x^{3} e^{-a x^{2}} d x=-\frac{d I_{1}}{d a}=\frac{1}{2 a^{2}} \\
& I_{4}=\int_{0}^{\infty} x^{4} e^{-a x^{2}} d x=\frac{d^{2} I_{0}}{d a^{2}}=\frac{3}{8} \sqrt{\frac{\pi}{a^{5}}} \\
& I_{5}=\int_{0}^{\infty} x^{5} e^{-a x^{2}} d x=\frac{d^{2} I_{1}}{d a^{2}}=\frac{1}{a^{3}} \\
& \vdots \\
& I_{2 n}=(-1)^{n} \frac{d^{n}}{d a^{n}} I_{0} \\
& I_{2 n+1}=(-1)^{n} \frac{d^{n}}{d a^{n}} I_{1}
\end{aligned}
\end{aligned}
$$

B. 8 Propagation of Uncertainty

In laboratory experiments, a common activity is to take measurements that act as raw data. These measurements are of several types-length, time interval, temperature, voltage, etc. - and are taken by a variety of instruments. Regardless of the measure-

