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Current and Resistance 

6.1 Electric Current 

Electric currents are flows of electric charge. Suppose a collection of charges is moving 
perpendicular to a surface of area A, as shown in Figure 6.1.1. 

Figure 6.1.1 Charges moving through a cross section. 

The electric current is defined to be the rate at which charges flow across any cross-
sectional area. If an amount of charge ΔQ passes through a surface in a time interval Δt, 
then the average current Iavg is given by 

Iavg =
ΔQ (6.1.1)
Δt 

The SI unit of current is the ampere (A), with 1 A = 1 coulomb/sec.  Common currents 
range from mega-amperes in lightning to nano-amperes in your nerves. In the limit 

t 0,Δ →  the instantaneous current I may be defined as 

I = dQ (6.1.2)
dt 

Since flow has a direction, we have implicitly introduced a convention that the direction 
of current corresponds to the direction in which positive charges are flowing. The flowing 
charges inside wires are negatively charged electrons that move in the opposite direction 
of the current. Electric currents flow in conductors: solids (metals, semiconductors), 
liquids (electrolytes, ionized) and gases (ionized), but the flow is impeded in non-
conductors or insulators. 

6.1.1 Current Density 

To relate current, a macroscopic quantity, to the microscopic motion of the charges, let’s 
examine a conductor of cross-sectional area A, as shown in Figure 6.1.2. 
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Figure 6.1.2 A microscopic picture of current flowing in a conductor. 

Let the total current through a surface be written as 

r
r

I = ∫∫ ⋅dJ A  (6.1.3) 

r

where J is the current density (the SI unit of current density are A/m2 ). If q is the charge 
of each carrier, and n is the number of charge carriers per unit volume, the total amount 
of charge in this section is then Δ =Q q nA  ( Δx) . Suppose that the charge carriers move 
with a speed vd ; then the displacement in a time interval Δt will be Δ =  Δ , whichx v td 

implies 

I = ΔQ = nqv A (6.1.4)avg dΔt 

The speed vd at which the charge carriers are moving is known as the drift speed. 
Physically, vd is the average speed of the charge carriers inside a conductor when an 
external electric field is applied.  Actually an electron inside the conductor does not travel 
in a straight line; instead, its path is rather erratic, as shown in Figure 6.1.3. 

Figure 6.1.3 Motion of an electron in a conductor. 

r

From the above equations, the current density J can be written as 

r

J =
 r
nqvd (6.1.5) 


r

Thus, we see that J and r
vd point in the same direction for positive charge carriers, in 
opposite directions for negative charge carriers. 
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To find the drift velocity of the electrons, we first note that an electron in the conductor 
r r

experiences an electric force Fe = −eE  which gives an acceleration 

r r 
r F eEea =  = −  (6.1.6)

m me e 

Let the velocity of a given electron immediate after a collision be vr i . The velocity of the 
electron immediately before the next collision is then given by 

r 
r r r r eE v f = vi + a t = vi − t (6.1.7)

me 

where t is the time traveled.  The average of v r f  over all time intervals is 

r 
r r eE = − t (6.1.8)v f vi me 

which is equal to the drift velocity vr d . Since in the absence of electric field, the velocity 
rof the electron is completely random, it follows that = 0 . If τ = t is the average vi 

characteristic time between successive collisions (the mean free time), we have 

r 
r rvd =  = −  eEτ (6.1.9)v f me 

The current density in Eq. (6.1.5) becomes 

r 
r r ⎛ eE ⎞ ne  2τ r J = −nevd = −  ne⎜ − τ ⎟ = E (6.1.10)

⎝ me ⎠ me 

r r 
Note that J and E will be in the same direction for either negative or positive charge 
carriers. 

6.2 Ohm’s Law 

In many materials, the current density is linearly dependent on the external electric field 
r 
E . Their relation is usually expressed as 

r r
J = σ E (6.2.1) 
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where σ  is called the conductivity of the material. The above equation is known as the 
(microscopic) Ohm’s law. A material that obeys this relation is said to be ohmic; 
otherwise, the material is non-ohmic.  

Comparing Eq. (6.2.1) with Eq. (6.1.10), we see that the conductivity can be expressed as 

ne2τσ =  (6.2.2)
me 

To obtain a more useful form of Ohm’s law for practical applications, consider a segment 
of straight wire of length l and cross-sectional area A, as shown in Figure 6.2.1. 

Figure 6.2.1 A uniform conductor of length l and potential difference Δ =  −  V Vb Va . 


Suppose a potential difference Δ =  −  V Vb Va is applied between the ends of the wire,

r r

creating an electric field E  and a current I. Assuming E  to be uniform, we then have 

V Vb Va = −∫
b r 

⋅ d r = El  (6.2.3)Δ =  −  E s  
a 

The current density can then be written as 

J = σ E = σ ⎛
⎜

ΔV ⎞
⎟ (6.2.4)

⎝ l ⎠

With J I= / A , the potential difference becomes 

V 
σ 
l J = ⎜

⎛
⎝ σ 

l
A ⎟

⎞
⎠

I = RI  Δ =  (6.2.5) 

where 

ΔV lR = =  (6.2.6)
I σ A 

is the resistance of the conductor. The equation 
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V IR  (6.2.7)Δ =

is the “macroscopic” version of the Ohm’s law. The SI unit of R is the ohm (Ω, Greek 
letter Omega), where 

1 V1 Ω ≡  (6.2.8)
1A 

Once again, a material that obeys the above relation is ohmic, and non-ohmic if the 
relation is not obeyed. Most metals, with good conductivity and low resistivity, are 
ohmic. We shall focus mainly on ohmic materials. 

Figure 6.2.2 Ohmic vs. Non-ohmic behavior. 

The resistivity ρ  of a material is defined as the reciprocal of conductivity, 

1 meρ =  =  (6.2.9)
σ ne2τ 

From the above equations, we see that ρ can be related to the resistance R of an object 
by 

E ΔV / l  RA  ρ = =  =  
J I / A l 

or 

ρlR =  (6.2.10)
A 

The resistivity of a material actually varies with temperature T. For metals, the variation 
is linear over a large range of T: 

ρ ρ= [1+α ( − ]T T  ) (6.2.11)0 0 

where α is the temperature coefficient of resistivity. Typical values of ρ , σ and α (at 
20 C ) for different types of materials are given in the Table below. °
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Material 
Resistivity ρ 

( Ω⋅m ) 
Conductivity σ 

1(  m)−Ω ⋅  
Temperature 

Coefficient α ( C)−1° 
Elements 

Silver 
81.59 10−× 76.29×10 0.0038 

Copper 81.72 10−× 5.81 107× 0.0039 
Aluminum 82.82 10−× 73.55×10 0.0039 

Tungsten 85.6 10−× 71.8×10 0.0045 

Iron 810.0 10−× 71.0×10 0.0050 
Platinum 810.6 10−× 71.0×10 0.0039 

Alloys 
Brass 7 10−8× 71.4×10 0.002 

Manganin 844 10−× 70.23×10 51.0 10−× 
Nichrome 8100 10−× 0.1 107× 0.0004 

Semiconductors 
Carbon (graphite) 

53.5 10−× 42.9×10 −0.0005 

Germanium (pure) 0.46 2.2 −0.048 
Silicon (pure) 640 31.6 10−× −0.075 

Insulators 
Glass 

10 1410 −10 14 1010 10− −− 

Sulfur 1015 10−15 

Quartz (fused) 1675×10 1.33 10−18× 

6.3 Electrical Energy and Power 

Consider a circuit consisting of a battery and a resistor with resistance R (Figure 6.3.1). 
Let the potential difference between two points a and b be V V  V− > 0Δ =  b a . If a charge 
Δq is moved from a through the battery, its electric potential energy is increased 
by Δ = Δ Δ  U  q V . On the other hand, as the charge moves across the resistor, the potential 
energy is decreased due to collisions with atoms in the resistor. If we neglect the internal 
resistance of the battery and the connecting wires, upon returning to a the potential 
energy of Δq  remains unchanged. 

Figure 6.3.1 A circuit consisting of a battery and a resistor of resistance R. 
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Thus, the rate of energy loss through the resistor is given by 

P = Δ
Δ 
U
t 

= ⎛
⎝ 

Δ
Δ 

q
t 

⎞
⎠

V I V	 (6.3.1)⎜ ⎟ Δ = Δ  

This is precisely the power supplied by the battery. Using V IRΔ =  , one may rewrite the 
above equation as 

(ΔV )2 
2P I R  == (6.3.2)

R 

6.4 Summary 

•	 The electric current is defined as: 

dQI = 
dt 

•	 The average current in a conductor is 


I = nqv A
avg d 

where n is the number density of the charge carriers, q is the charge each carrier 
has, vd  is the drift speed, and A is the cross-sectional area. 

•	 The current density J through the cross sectional area of the wire is 


J 
r 

= nqv r d


•	 Microscopic Ohm’s law: the current density is proportional to the electric field, 
and the constant of proportionality is called conductivity σ : 

r r 
J = σ E 

•	 The reciprocal of conductivity σ is called resistivity ρ : 


1
ρ = 
σ 

• Macroscopic Ohm’s law: The resistance R of a conductor is the ratio of the 
potential difference ΔV  between the two ends of the conductor  and the current I: 
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ΔVR = 
I 

•	 Resistance is related to resistivity by


ρl
R = 
A 

where l  is the length and A  is the cross-sectional area of the conductor. 

• The drift velocity of an electron in the conductor is 

r 
r eE vd = − τ 

me 

where me is the mass of an electron, and τ is the average time between 
successive collisions. 

• The resistivity of a metal is related to τ by 

eρ = 1 = m 
2σ ne τ 

•	 The temperature variation of resistivity of a conductor is 


ρ ρ= 0 ⎣⎡1+α (T T0 )⎦⎤
− 

where α is the temperature coefficient of resistivity. 

•	 Power, or rate at which energy is delivered to the resistor is  


2 ( )2
ΔV
P I V  I= Δ  =  R = 

R 

6.5 Solved Problems 

6.5.1 Resistivity of a Cable 

A 3000-km long cable consists of seven copper wires, each of diameter 0.73 mm, 
bundled together and surrounded by an insulating sheath. Calculate the resistance of the 

× −cable. Use 3 10  6 Ω⋅cm   for the resistivity of the copper. 
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Solution: 

The resistance R of a conductor is related to the resistivity ρ by R / , where l= ρl A  and A 
are the length of the conductor and the cross-sectional area, respectively. Since the cable 
consists of N = 7 copper wires, the total cross sectional area is  

A N r  2 = N π d 2 

= 7 π (0.073cm) 2 

= π 
4 4 

The resistance then becomes 

−6 8ρl (3 10  Ω⋅cm  )(  3  10 cm  
4

× × )
R = = = 3.1 10 Ω×

A 7π (0.073cm )2 / 4 

6.5.2 Charge at a Junction 

Show that the total amount of charge at the junction of the two materials in Figure 6.5.1 
is ε0 I(σ 2 

−1 −σ1 
−1) , where I is the current flowing through the junction, andσ1 and σ 2 are 

the conductivities for the two materials. 

Figure 6.5.1 Charge at a junction. 

Solution: 

r
In a steady state of current flow, the normal component of the current density J  must be 
the same on both sides of the junction. Since J = σ E , we have σ E = σ E1 1  2 2  

or 

E2 = 
⎛
⎜

σ1 ⎞⎟ E1 
⎝ σ 2 ⎠ 

Let the charge on the interface be qin , we have, from the Gauss’s law: 

r r 
⋅ d = (E  E A  ) = qin�∫∫ E A  −2 1 

S ε0 

or 
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E2 − E1 = 
A
q 
ε 
in

0 

Substituting the expression for E2  from above then yields 

⎛ σ ⎞ ⎛ 1 1 ⎞ 
qin = ε0 AE  1 ⎜ 1 −1⎟ = ε0 Aσ1E1 ⎜ − ⎟ 

⎝ σ 2 ⎠ ⎝ σ 2 σ1 ⎠ 

Since the current is I = JA = (σ E A , the amount of charge on the interface becomes 1 1  ) 

⎛ 1 1 ⎞ 
qin = ε0 I ⎜ − ⎟ 

⎝ σ 2 σ1 ⎠ 

6.5.3 Drift Velocity 

The resistivity of seawater is about 25 Ω⋅cm . The charge carriers are chiefly Na+  and 
Cl− ions, and of each there are about 3 1020 / 3× cm . If we fill a plastic tube 2 meters long 
with seawater and connect a 12-volt battery to the electrodes at each end, what is the 
resulting average drift velocity of the ions, in cm/s? 

Solution: 

The current in a conductor of cross sectional area A is related to the drift speed vd of the 
charge carriers by 

I = enAvd 

where n is the number of charges per unit volume. We can then rewrite the Ohm’s law as 

V = IR = (neAv d )⎜
⎛ ρl 

⎟
⎞ = nev d ρl 

⎝ A ⎠ 

which yields 

V vd = 
neρl 

Substituting the values, we have 

12V ⋅ cm−5 V cm −5 
20 3 −19 

vd = (6×10 /cm )(  1.6×10 C)(25Ω⋅  cm )(  200cm )
= 2.5×10 

C ⋅Ω 
= 2.5 ×10 

s 
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In converting the units we have used 

V V 1 A⎛ ⎞  −1= ⎜ ⎟ =  =  s 
Ω⋅C Ω C C⎝ ⎠  

6.5.4 Resistance of a Truncated Cone 

Consider a material of resistivity ρ in a shape of a truncated cone of altitude h, and radii a 
and b, for the right and the left ends, respectively, as shown in the Figure 6.5.2. 

Figure 6.5.2 A truncated Cone. 

Assuming that the current is distributed uniformly throughout the cross-section of the 
cone, what is the resistance between the two ends? 

Solution: 

Consider a thin disk of radius r at a distance 
x from the left end. From the figure shown 
on the right, we have 

b r− b a− = 
x h 

or 

r = (a − b) x + b
h 

Since resistance R is related to resistivity ρ by R = ρl A/ , where l is the length of the 
conductor and A is the cross section, the contribution to the resistance from the disk 
having a thickness dy is 

ρ dx ρ dxdR = = 
+ −  ) / ]  π r2 π[b (a  b x  h  2 
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Straightforward integration then yields 

h ρ dx ρhR = ∫ 2 = 
) / ]  π ab  

where we have used 
du 1

∫ (αu + β )2 = −  
( u + β ) 

0 π[b + (a − b x  h  

α α  

Note that if b a , Eq. (6.2.9) is reproduced.= 

6.5.5 Resistance of a Hollow Cylinder 

Consider a hollow cylinder of length L and inner radius a and outer radius b , as shown 
in Figure 6.5.3. The material has resistivity ρ. 

Figure 6.5.3 A hollow cylinder. 

(a) Suppose a potential difference is applied between the ends of the cylinder and 
produces a current flowing parallel to the axis.  What is the resistance measured? 

(b) If instead the potential difference is applied between the inner and outer surfaces so 
that current flows radially outward, what is the resistance measured? 

Solution: 

(a) When a potential difference is applied between the ends of the cylinder, current flows 
parallel to the axis. In this case, the cross-sectional area is A = π (b2 − a2 ) , and the 
resistance is given by 

ρL ρLR = = 2 2A π (b − a ) 
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(b) Consider a differential element which is made up of a thin cylinder of inner radius r 
and outer radius r + dr and length L. Its contribution to the resistance of the system is 
given by 

ρ dl ρ drdR = = 
A	 2π rL  

where A = 2π rL  is the area normal to the direction of current flow. The total resistance 
of the system becomes 

b dr ρ bρ ⎛ ⎞R = ∫ = ln ⎜ ⎟a 2π rL 2π L a⎝ ⎠  

6.6 Conceptual Questions 

1.	 Two wires A and B of circular cross-section are made of the same metal and have 
equal lengths, but the resistance of wire A is four times greater than that of wire B. 
Find the ratio of their cross-sectional areas.   

2.	 From the point of view of atomic theory, explain why the resistance of a material 
increases as its temperature increases. 

3.	 Two conductors A and B of the same length and radius are connected across the 
same potential difference. The resistance of conductor A is twice that of B. To 
which conductor is more power delivered? 

6.7 Additional Problems 

6.7.1 Current and Current Density 

A sphere of radius 10 mm that carries a charge of 8 nC = × −9 C8 10 is whirled in a circle 
at the end of an insulated string. The rotation frequency is 100π rad/s. 

(a) What is the basic definition of current in terms of charge? 

(b) What average current does this rotating charge represent?  

(c) What is the average current density over the area traversed by the sphere? 

6.7.2 Power Loss and Ohm’s Law 

A 1500 W radiant heater is constructed to operate at 115 V.  

6-14 



(a) What will be the current in the heater? [Ans. ~10 A] 

(b) What is the resistance of the heating coil? [Ans. ~10 Ω] 

(c) How many kilocalories are generated in one hour by the heater? (1 Calorie = 4.18 J)  

6.7.3 Resistance of a Cone 

A copper resistor of resistivity ρ is in the shape of a cylinder of radius b and length L1 
appended to a truncated right circular cone of length L2 and end radii b and a as shown in 
Figure 6.7.1. 

Figure 6.7.1 

(a) What is the resistance of the cylindrical portion of the resistor?  

(b) What is the resistance of the entire resistor? (Hint: For the tapered portion, it is 
necessary to write down the incremental resistance dR of a small slice, dx, of the resistor 
at an arbitrary position, x, and then to sum the slices by integration. If the taper is small, 
one may assume that the current density is uniform across any cross section.) 

(c) Show that your answer reduces to the expected expression if a = b. 

(d) If L1 = 100 mm, L2 = 50 mm, a = 0.5 mm, b = 1.0 mm, what is the resistance?  

6.7.4 Current Density and Drift Speed 

(a) A group of charges, each with charge q, moves with velocity v r . The number of r 
particles per unit volume is n. What is the current density J of these charges, in 
magnitude and direction?  Make sure that your answer has units of A/m2. 

(b) We want to calculate how long it takes an electron to get from a car battery to the 
starter motor after the ignition switch is turned. Assume that the current flowing is115 A , 
and that the electrons travel through copper wire with cross-sectional area 31.2 mm and 
length 85.5 cm . What is the current density in the wire?  The number density of the 
conduction electrons in copper is 8.49×1028 /m3 . Given this number density and the 
current density, what is the drift speed of the electrons? How long does it take for an 
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electron starting at the battery to reach the starter motor?  [Ans: 3.69×106  A/m 2 , 
2.71 10 × −4  m/s , 52.5 min .] 

6.7.5 Current Sheet 

A current sheet, as the name implies, is a plane containing currents flowing in one 
direction in that plane. One way to construct a sheet of current is by running many 
parallel wires in a plane, say the yz -plane, as shown in Figure 6.7.2(a). Each of these 
wires carries current I out of the page, in the − ĵ  direction, with n wires per unit length in 
the z-direction, as shown in Figure 6.7.2(b). Then the current per unit length in the z 
direction is nI . We will use the symbol K to signify current per unit length, so that 
K nl  here.=

Figure 6.7.2 A current sheet. 

Another way to construct a current sheet is to take a non-conducting sheet of charge with 
fixed charge per unit area σ and move it with some speed in the direction you want 
current to flow.  For example, in the sketch to the left, we have a sheet of charge moving 
out of the page with speed v . The direction of current flow is out of the page. 

(a) Show that the magnitude of the current per unit length in the z direction, K , is given 
by σ v . Check that this quantity has the proper dimensions of current per length.  This is 
in fact a vector relation, K 

r 
(t) = σ v r( )t , since the sense of the current flow is in the same 

direction as the velocity of the positive charges.   

(b) A belt transferring charge to the high-potential inner shell of a Van de Graaff 
accelerator at the rate of 2.83 mC/s.  If the width of the belt carrying the charge is 
50 cm and the belt travels at a speed of 30 m/s , what is the surface charge density on the 
belt?  [Ans: 189 μC/m2] 

6.7.6 Resistance and Resistivity 

A wire with a resistance of 6.0 Ω is drawn out through a die so that its new length is three 
times its original length.  Find the resistance of the longer wire, assuming that the 
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resistivity and density of the material are not changed during the drawing process.  [Ans: 
54 Ω]. 

6.7.7 Power, Current, and Voltage 

A 100-W light bulb is plugged into a standard 120-V outlet.  (a) How much does it cost 
per month (31 days) to leave the light turned on?  Assume electricity costs 6 cents per 
kW h. (b) What is the resistance of the bulb?  (c) What is the current in the bulb?  [Ans:  ⋅ 
(a) $4.46; (b) 144 Ω; (c) 0.833 A]. 

6.7.8 Charge Accumulation at the Interface 

Figure 6.7.3 shows a three-layer sandwich made of two resistive materials with 
resistivities ρ1  and ρ2 . From left to right, we have a layer of material with resistivity ρ1

of width d / 3, followed by a layer of material with resistivity ρ2 , also of width d / 3, 
followed by another layer of the first material with resistivity ρ1  , again of width d / 3. 

Figure 6.7.3 Charge accumulation at interface. 

The cross-sectional area of all of these materials is A. The resistive sandwich is bounded 
on either side by metallic conductors (black regions).  Using a battery (not shown), we 
maintain a potential difference V across the entire sandwich, between the metallic 
conductors. The left side of the sandwich is at the higher potential (i.e., the electric fields 
point from left to right).   

There are four interfaces between the various materials and the conductors, which we 
label a through d, as indicated on the sketch.  A steady current I flows through this 
sandwich from left to right, corresponding to a current density = AJ I  / . 

r r 
(a) What are the electric fields E1 and E2 in the two different dielectric materials?  To 
obtain these fields, assume that the current density is the same in every layer.  Why must 
this be true?  [Ans:  All fields point to the right, E1 = ρ1I / A , E2 = ρ2 I / A ; the current 
densities must be the same in a steady state, otherwise there would be a continuous 
buildup of charge at the interfaces to unlimited values.] 
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(b) What is the total resistance R of this sandwich?  Show that your expression reduces to 
the expected result if ρ = ρ = ρ . [Ans: R = d (2 ρ + ρ ) / 3  A ; if ρ = ρ = ρ , then 1 2 1 2 1 2 

R = d ρ / A , as expected.] 

(c) As we move from right to left, what are the changes in potential across the three 
layers, in terms of V and the resistivities?  [Ans:  V ρ1 / 2( ρ1 + ρ2 ) ,V ρ2 / 2( ρ1 + ρ2 ) , 

( ρ + ρ ) , summing to a total potential drop of V, as required].V ρ1 / 2 1 2 

(d) What are the charges per unit area, σ a through σ d , at the interfaces?  Use Gauss's 
Law and assume that the electric field in the conducting caps is zero. 
[Ans: σ a = −σ d = 3ε0V ρ1 / d (2 ρ1 + ρ2 ) , σ b = −σ c = 3ε0V (ρ2 − ρ1 ) / d (2 ρ1 + ρ2 ) .] 

(e) Consider the limit ρ2 � ρ1 . What do your answers above reduce to in this limit? 
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